Sunday, March 2, 2025

Collections - Working With Stream




What is a Java Stream?

A Stream is a sequence of elements supporting functional-style operations like filtering, mapping, and reducing.
Streams do not modify the original data structure.
They operate lazily, meaning operations are executed only when a terminal operation is applied.
Can be sequential or parallel


Stream Pipeline Structure

A Java Stream Pipeline consists of:

Source - Where the stream comes from (e.g., a List, Set, or Array)
Intermediate Operations - Process and transform elements
Terminal Operation - Produces the final result, closing the stream.


Example of Stream PipelineList<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6); List<Integer> result = numbers.stream() // Step 1: Create Stream .filter(n -> n % 2 == 0) // Step 2: Intermediate Operation .map(n -> n * n) // Step 3: Intermediate Operation .collect(Collectors.toList()); // Step 4: Terminal Operation System.out.println(result);




Flow Diagram to Understand Filters

Understanding Streams
Stream Sources

data structure from which the stream originates. This could be a collection, array, file, or range.List<String> list = Arrays.asList("Apple", "Banana", "Cherry"); Stream<String> stream1 = list.stream(); ---------------------------------------------------------------------- String[] array = {"Red", "Green", "Blue"}; Stream<String> stream2 = Arrays.stream(array); ---------------------------------------------------------------------- Stream<String> stream3 = Stream.of("One", "Two", "Three"); ----------------------------------------------------------------------

Intermediate Operation -

Intermediate operations transform a stream without consuming it.

They return another Stream, allowing further operations to be chained. Stream<Integer> filtered = numbers.stream().filter(n -> n > 5); ----------------------------------------------------------------------- Stream<Integer> squared = numbers.stream().map(n -> n * n); ----------------------------------------------------------------------- Stream<String> sorted = list.stream().sorted(); ----------------------------------------------------------------------- Stream<String> sortedDesc = list.stream().sorted(Comparator.reverseOrder()); ----------------------------------------------------------------------- Stream<Integer> uniqueNumbers = numbers.stream().distinct(); ----------------------------------------------------------------------- Stream<String> limited = list.stream().limit(2); ----------------------------------------------------------------------- Stream<String> skipped = list.stream().skip(2); ----------------------------------------------------------------------- List<List<Integer>> listOfLists = Arrays.asList( Arrays.asList(1, 2, 3), Arrays.asList(4, 5, 6) ); List<Integer> flattened = listOfLists.stream() .flatMap(List::stream) .collect(Collectors.toList()); // Output: [1, 2, 3, 4, 5, 6] ------------------------------------------------------------------------

Terminal Operation -

Terminal expressions (or terminal operations) consume the stream and produce a result or side effect. Unlike intermediate operations (which return a stream for further processing), terminal operations close the stream, meaning it cannot be used again.

✅ Consumes the stream – Once a terminal operation is applied, the stream cannot be reused.

✅ Returns a result – Can return a single value, a collection, or perform an action like printing.

✅ Forces execution – Since streams are lazy, terminal operations trigger actual processing.List<String> collected = list.stream().collect(Collectors.toList()); ---------------------------------------------------------------------------------- Set<String> collectedSet = list.stream().collect(Collectors.toSet()); ---------------------------------------------------------------------------------- Map<String, Integer> collectedMap = list.stream().collect(Collectors.toMap(s -> s, String::length)); ---------------------------------------------------------------------------------- list.stream().forEach(System.out::println); ---------------------------------------------------------------------------------- long count = list.stream().filter(s -> s.startsWith("A")).count(); ---------------------------------------------------------------------------------- Optional<String> first = list.stream().findFirst(); Optional<String> any = list.stream().findAny(); ---------------------------------------------------------------------------------- boolean anyMatch = list.stream().anyMatch(s -> s.contains("e")); boolean allMatch = list.stream().allMatch(s -> s.length() > 3); boolean noneMatch = list.stream().noneMatch(s -> s.isEmpty()); --------------------------------------------------------------------------------- Optional<Integer> sum = numbers.stream().reduce((a, b) -> a + b); ---------------------------------------------------------------------------------- int sum = numbers.stream().reduce(0, Integer::sum); ---------------------------------------------------------------------------------- Optional<Integer> min = numbers.stream().min(Integer::compare); Optional<Integer> max = numbers.stream().max(Integer::compare); ----------------------------------------------------------------------------------

Common Implementation

filter() for condition-based filtering.
map() to transform elements.
reduce() for aggregation (sum, max, min).
groupingBy() to classify data.
partitioningBy() for true/false categorization.
sorted() to order elements.
flatMap() to merge multiple collections.

List<String> uppercased = list.stream() .map(String::toUpperCase) .collect(Collectors.toList()); ---------------------------------------------------------------- List<Integer> evens = numbers.stream() .filter(n -> n % 2 == 0) .collect(Collectors.toList()); ----------------------------------------------------------------- // Use groupingBy() when you need multiple groups List<Employee> employees = Arrays.asList( new Employee("Alice", "HR"), new Employee("Bob", "IT"), new Employee("Charlie", "HR"), new Employee("David", "IT"), new Employee("Eve", "Finance") ); // Group employees by department Map<String, List<Employee>> groupedByDepartment = employees.stream() .collect(Collectors.groupingBy(emp -> emp.department)); System.out.println(groupedByDepartment); ------------------------------------------------------------------ // Use of partitioning to group based on condition List<Integer> numbers = Arrays.asList(10, 15, 20, 25, 30); // Partition numbers into even and odd Map<Boolean, List<Integer>> partitionedNumbers = numbers.stream() .collect(Collectors.partitioningBy(num -> num % 2 == 0)); System.out.println(partitionedNumbers); -------------------------------------------------------------------- List<Integer> numbers = Arrays.asList(10, 15, 20, 25, 30); int sum = numbers.stream() .filter(n -> n % 2 == 0) .reduce(0, Integer::sum); ---------------------------------------------------------------------- List<String> names = Arrays.asList("Alice", "Bob", "Charlie"); String result = names.stream() .collect(Collectors.joining(", ")); ----------------------------------------------------------------------------- //Use of flatmap to create a list from list of list List<List<String>> nestedList = Arrays.asList( Arrays.asList("a", "b"), Arrays.asList("c", "d"), Arrays.asList("e", "f") ); List<String> flatList = nestedList.stream() .flatMap(List::stream) .collect(Collectors.toList());Benefits of Using Streams:


Improves Readability – Eliminates verbose loops and enhances code clarity.
Encourages Functional Programming – Uses lambda expressions for concise processing logic.
Optimized Performance – Lazy evaluation and parallel processing reduce execution time for large datasets.


Official Documentation & References

Oracle Java Streams Documentation 🔗 https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
Java Tutorials by Oracle 🔗 https://docs.oracle.com/javase/tutorial/collections/streams/index.html
Baeldung - Guide to Java Streams 🔗 https://www.baeldung.com/java-8-streams
GeeksforGeeks - Java Streams Guide 🔗 https://www.geeksforgeeks.org/stream-in-java/

Mindmap to Understand Selenium 4 architecture

 Selenium is one of the most popular open-source automation testing tools, widely used for web application testing. It is important to know its architecture — the flow of communication between test script, Selenium components, and the browser.

Selenium 4 Architecture

Components of Selenium Architecture

Selenium Client Libraries (Language Bindings)

These are language-specific libraries provided by Selenium. Test scripts use these libraries to interact with the browser using high-level commands. The client libraries translate these high-level commands into W3C WebDriver Protocol requests.

Browser Drivers

Each browser requires a dedicated driver to interpret Selenium commands. Browser drivers act as a bridge between your Selenium script and the actual browser. They receive HTTP commands (W3C Protocol) from Selenium, convert them into native browser actions, and send back responses to Selenium.

Browsers

Real browsers (Chrome, etc.) that open the web page and execute actual user interactions. The browser responds to commands (click, type, navigate) and sends the results back through the browser driver.

Selenium 4 – End-to-End Flow

W3C WebDriver Protocol in Selenium 4

  • Starting from Selenium 4, Selenium uses the W3C WebDriver Protocol by default.
  • This is a standard communication protocol defined by the World Wide Web Consortium (W3C).

It ensures:

  • Consistent behavior across all browsers.
  • Direct communication between Selenium and modern browsers.
  • No dependency on legacy JSON Wire Protocol.

Selenium Libraries:

Selenium Libraries are the backbone of Selenium automation, providing a simple and language-friendly API to control browsers via the W3C WebDriver Protocol.

Selenium Capabilities and Libraries

Useful Documentation

https://www.selenium.dev/documentation/

https://w3c.github.io/webdriver/

https://www.selenium.dev/blog/

https://github.com/SeleniumHQ/selenium

https://www.toolsqa.com/selenium-webdriver/selenium-4/

https://www.youtube.com/@seleniumhq